Elliptic Solitons and Gröbner Bases

نویسنده

  • Yurii V. Brezhnev
چکیده

We consider the solution of spectral problems with elliptic coefficients in the framework of the Hermite ansatz. We show that the search for exactly solvable potentials and their spectral characteristics is reduced to a system of polynomial equations solvable by the Gröbner bases method and others. New potentials and corresponding solutions of the Sawada–Kotera, Kaup– Kupershmidt, Boussinesq equations and others are found. 1 Permanent address: Theoretical Physics Department, Kaliningrad State University, A. Nevsky st. 14, 236041, Russia. E-mail : [email protected] Elliptic Solitons and Gröbner Bases 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic Solitons and the Gröbner Bases

We consider the solution of spectral problems with elliptic potentials in the framework of the Hermite ansatz. We show that the search for potentials and their spectral characteristics is reduced to a system of polynomial equations solvable by the Gröbner bases method and others. New potentials and corresponding solutions of the Sawada–Kotera, Kaup–Kupershmidt, Boussinesq equations are found.

متن کامل

Abelian solitons

We describe a new algebraically completely integrable system, whose integral manifolds are co-elliptic subvarieties of Jacobian varieties. This is a multi-periodic extension of the Krichever-Treibich-Verdier system, which consists of elliptic solitons. The goal of this work is to generalize the theory of elliptic solitons, which was developed by A. Treibich and J.-L. Verdier based on earlier wo...

متن کامل

MATH536A Paper: Gröbner Bases

An introduction to Gröbner bases and some of their uses in affine algebraic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001